Use of a Four-Tiered Graph to Parse the Factors Leading to Phenotypic Clustering in Bacteria: A Case Study Based on Samples from the Aletsch Glacier

نویسندگان

  • Miroslav Svercel
  • Manuela Filippini
  • Nicolas Perony
  • Valentina Rossetti
  • Homayoun C. Bagheri
چکیده

An understanding of bacterial diversity and evolution in any environment requires knowledge of phenotypic diversity. In this study, the underlying factors leading to phenotypic clustering were analyzed and interpreted using a novel approach based on a four-tiered graph. Bacterial isolates were organized into equivalence classes based on their phenotypic profile. Likewise, phenotypes were organized in equivalence classes based on the bacteria that manifest them. The linking of these equivalence classes in a four-tiered graph allowed for a quick visual identification of the phenotypic measurements leading to the clustering patterns deduced from principal component analyses. For evaluation of the method, we investigated phenotypic variation in enzyme production and carbon assimilation of members of the genera Pseudomonas and Serratia, isolated from the Aletsch Glacier in Switzerland. The analysis indicates that the genera isolated produce at least six common enzymes and can exploit a wide range of carbon resources, though some specialist species within the pseudomonads were also observed. We further found that pairwise distances between enzyme profiles strongly correlate with distances based on carbon profiles. However, phenotypic distances weakly correlate with phylogenetic distances. The method developed in this study facilitates a more comprehensive understanding of phenotypic clustering than what would be deduced from principal component analysis alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Three Methods of Isolation of the Genus Nocardia from the Soil of Hospitals in Isfahan Province, Iran, and its Identification Based on Phenotypic and Molecular Methods

Background & Aims: Nocardia are gram-positive, aerobic, relative acid-fast, and opportunistic bacteria, and one of the causes of systematic infection around the world. The natural habitats of these bacteria are soil and dust. Hospitalized patients with immune deficiency are at high risk of transmission of opportunistic infection. Due to these facts and the complexities that exist in the isolati...

متن کامل

Comparison of Three Methods of Isolation of the Genus Nocardia from the Soil of Hospitals in Isfahan Province, Iran, and its Identification Based on Phenotypic and Molecular Methods

Background & Aims: Nocardia are gram-positive, aerobic, relative acid-fast, and opportunistic bacteria, and one of the causes of systematic infection around the world. The natural habitats of these bacteria are soil and dust. Hospitalized patients with immune deficiency are at high risk of transmission of opportunistic infection. Due to these facts and...

متن کامل

Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering

Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...

متن کامل

Sampling from social networks’s graph based on topological properties and bee colony algorithm

In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013